1. Research Aim
In order to build an energy-saving structure aiming to minimize energy consumption, we will analyze the thermal buffering phenomena between the ventilation flow inside and the unsteady wind flow outside the building, and suggest an optimized design criteria. Therefore, this proposal aims to (i) obtain comprehensive mean and fluctuating thermo-fluid properties in order to delineate more clearly the link between unsteady motions of the wind flow and the shape of the obstacles, (ii) analyze the mechanism of natural/forced ventilation similarity (e.g. Grashof & Rayleigh number) in the modelling of turbulent flows inside generic three-dimensional obstacles of a wide variety of heights and aspect ratios, (iii) make a flow modeling between the unsteady flow outside of the obstacles and the natural/forced ventilation inside and herein analyze the thermal buffering, and (iv) thus secure the core technologies of the structural design criteria.

2. Research Method
First, the wind tunnel tests were conducted in the turbulent boundary layer wind tunnel (Fig. 1) of the Wind Engineering Research Center at Tokyo Polytechnic University (TPU) in Japan. This wind tunnel is an open-circuit, low-speed wind tunnel designed for wind environmental assessment and ventilation studies. Most of the experiments were conducted in the end-part test section of the tunnel, where the sectional dimensions were 1.2 m width, 1.0 m height, and 14 m length, with a maximum wind speed of approximately 30 m/s. Table 1 gives the dimensions of the group of surface roughness blocks used in the wind tunnel to generate the simulated turbulent boundary layer. The details of the generated turbulent boundary layer are illustrated in the Fig. 2.
The work involved covers a combination of microclimate measurements, numerical microclimate simulations and studies of the urban planning process. If possible, field measurements would be conducted in areas with significantly differing characteristics, including variations in urban geometry and distance to the sea, to map variations in microclimate and outdoor thermal comfort within each city. To cover a wider range of urban design, to test the impact of different design parameters on outdoor thermal comfort and to achieve optimum design solutions, microclimate simulations using Computational Fluid Dynamics (CFD) software will be conducted in the near future. The results obtained will be studied and examined as well as analyzed carefully for preparing criteria of urban ventilation and thermal comfort criteria for outdoor environment.

Figure 3 shows the setup and measurement system of temperature inside a model. 27 thermo-couples are systematically installed inside the model and the measurement system (HIOKI LR8416) was placed on the side of wind tunnel. In order to save the temperature data simultaneously the sampling rate and the number of samples were 10Hz and 18,000, respectively. The temperatures on the ground inside the model were set to two different temperature, i.e., 34.5 and 80.5 degs.

3. Research Result
One of the priorities of this study was the validation of the surface pressure around square models with different height and the temperature variation inside the models. To achieve this, we carried out pressure and temperature measurements and precise analysis based on the non-dimensional parameter C_p and C_T. Figure 3 depicts the variation of the averaged surface pressure C_p along the axial centreline of the cube obtained in the wind tunnel. It also graphically compares our results to those obtained by others in previous studies. As shown in the figure, the current surface-pressure profile is reasonably well...
located in the middle of the others, which means that the turbulent intensity and other inflow conditions are slightly different, but not identical, so that it can be easily conjectured that the surface-pressure distribution around the cube could be different based on the inflow boundary condition. For example, CR’s result was obtained under a specific inlet flow condition of high turbulent intensity, whereas LCH’s was obtained under relatively lower turbulent intensity (Castro and Robins, 1977; Lim et al., 2006; Lim, 2009).

Figure 4 Mean surface static pressure along the central section with different wind direction

In order to observe the effect of different height on the surface pressure around the building, we performed three different buildings.

Figure 5 Mean surface static pressure along the central section with 3 different heights

These surface profiles are the fundamental pressure to estimate the impact of wind load inside the building, which can be used to estimate the thermal comfort for the indoor environment. The current results were not fully described, but the relationship between the wind load and thermal comfort inside the room will be parametrically estimated for the future work.

Second, the temperature variation inside the models is important parameter to achieve the target including the thermal comfort for the pedestrian and the humans. In particular, in order to achieve the appropriate comparison of temperature distribution, a variety of velocity and oncoming wind conditions are made in the tunnel.

Figure 6, Figure 7
Figures 6 and 7 show the temporal variation of temperature inside the model. In order to get the temporal temperature variation, 27 different thermo-couples are systematically deployed inside the model and the measurement system was a multi-channel data logging system (HIOKI LR8416). In order to save the temperature data simultaneously the sampling rate and the number of samples were 10Hz and 18,000, respectively. The temperatures on the ground inside the model were set to two different temperature, i.e., 34.5 and 80.5degs. As shown in the figures, without the wind, the temperature increases and reaches to the maximum value and gradually descends monotonically, which would be controlled by temperature control device for the safety reason.

When the velocity reaches to 2m/s, the temperature decreases in the heating region, i.e., 0-5mins and
decreases monotonically. As the oncoming wind increases further around 6m/s, the maximum peak of temperature would be slightly shifted to the early time, but the temperature reduction was not substantial compared to the lower velocity, i.e., 2m/s. It seems to be caused by the wake inside the model, but this kind of phenomena should be researched further in the future.

4. Published Paper etc.

[Published papers]

5. Research Organization

1. Representative Researcher

Name: HeeChang LIM
Organization: School of Mechanical Engineering, Pusan National University
Contact address: San30, Jangjeon-dong, Guemjeong-gu, Busan, South Korea
Tel: +82-(0)51-510-2302, Fax: +82-(0)51-512-5236, E-mail: hclim@pusan.ac.kr

2. Collaborate Researchers

Name: Kunio Mizutani
Organization: Tokyo Polytechnic University
Tel: +81-90)46-242-9923, Fax: +81-90)46-242-9923, E-mail: mizutani@arch.t-kougei.ac.jp

Name: Kenji Tsukamoto
Organization: School of Mechanical Engineering, Pusan National University
Contact address: San30, Jangjeon-dong, Guemjeong-gu, Busan, South Korea
Tel: +81-90)46-242-9923, Fax: +81-90)46-242-9923, E-mail: tsukamoto@arch.t-kougei.ac.jp

Name: HaeYoung KIM
Organization: Tokyo Institute of technology

Name: YoungTae LEE
Organization: School of Mechanical Engineering, Pusan National University
Tel: +82-(0)51-510-3085, Fax: +82-(0)51-512-5236, E-mail: ytlee@pusan.ac.kr

Name: Soo-II BOO
Organization: School of Mechanical Engineering, Pusan National University
Tel: +82-(0)51-510-3085, Fax: +82-(0)51-512-5236, E-mail: qntndlf@gmail.com

Name: SiYeol LEE
Organization: School of Mechanical Engineering, Pusan National University
Tel: +82-(0)51-510-3085, Fax: +82-(0)51-512-5236, E-mail: cowish@naver.com